convex combination - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

convex combination - перевод на русский

LINEAR COMBINATION OF POINTS WHOSE COEFFICIENTS ARE NON-NEGATIVE AND SUM TO ONE
Convex sum
  • Convex combination of three points <math>v_{0},v_{1},v_{2} \text{ of } 2\text{-simplex} \in \mathbb{R}^{2}</math> in a two dimensional vector space <math> \mathbb{R}^{2}</math> as shown in animation with <math>\alpha^{0}+\alpha^{1}+\alpha^{2}=1</math>, <math>P( \alpha^{0},\alpha^{1},\alpha^{2} )</math> <math>:= \alpha^{0} v_{0} + \alpha^{1} v_{1} + \alpha^{2} v_{2}</math> . When P is inside of the triangle <math>\alpha_{i}\ge 0</math>.  Otherwise, when P is outside of the triangle, at least one of the <math>\alpha_{i}</math> is negative.
  • Convex combination of four points <math>A_{1},A_{2},A_{3},A_{4} \in \mathbb{R}^{3}</math> in a three dimensional vector space <math> \mathbb{R}^{3}</math> as animation in [[Geogebra]] with <math>\sum_{i=1}^{4} \alpha_{i}=1</math> and <small><math>\sum_{i=1}^{4} \alpha_{i}\cdot A_{i}=P</math></small>.
When P is inside of the tetrahedron <math>\alpha_{i}>=0</math>. Otherwise, when P is outside of the tetrahedron, at least one of the <math>\alpha_{i}</math> is negative.
  • Convex combination of two functions as vectors in a vector space of functions - visualized in Open Source Geogebra with <math>[a,b]=[-4,7]</math> and as the first function <math>f:[a,b]\to \mathbb{R}</math> a polynomial is defined. <math>f(x):= \frac{3}{10} \cdot x^2 - 2 </math>
A trigonometric function <math>g:[a,b]\to \mathbb{R}</math> was chosen as the second function. <math>g(x):= 2 \cdot cos(x) + 1</math>
The figure illustrates the convex combination <math>K(t):= (1-t)\cdot f + t \cdot g</math> of <math>f</math> and <math>g</math> as graph in red color.
  • Convex combination of two points <math> v_1,v_2 \in \mathbb{R}^2</math> in a two dimensional vector space  <math>\mathbb{R}^2</math> as animation in [[Geogebra]] with <math>t \in [0,1]</math> and <math> K(t) := (1-t)\cdot v_1 + t \cdot v_2</math>

convex combination         

математика

выпуклая комбинация

convex combination         
мат.
выпуклая комбинация
convex sum         

математика

выпуклая сумма

Определение

convex hull
<mathematics, graphics> For a set S in space, the smallest convex set containing S. In the plane, the convex hull can be visualized as the shape assumed by a rubber band that has been stretched around the set S and released to conform as closely as possible to S. (1997-08-03)

Википедия

Convex combination

In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other words, the operation is equivalent to a standard weighted average, but whose weights are expressed as a percent of the total weight, instead of as a fraction of the count of the weights as in a standard weighted average.

More formally, given a finite number of points x 1 , x 2 , , x n {\displaystyle x_{1},x_{2},\dots ,x_{n}} in a real vector space, a convex combination of these points is a point of the form

α 1 x 1 + α 2 x 2 + + α n x n {\displaystyle \alpha _{1}x_{1}+\alpha _{2}x_{2}+\cdots +\alpha _{n}x_{n}}

where the real numbers α i {\displaystyle \alpha _{i}} satisfy α i 0 {\displaystyle \alpha _{i}\geq 0} and α 1 + α 2 + + α n = 1. {\displaystyle \alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}=1.}

As a particular example, every convex combination of two points lies on the line segment between the points.

A set is convex if it contains all convex combinations of its points. The convex hull of a given set of points is identical to the set of all their convex combinations.

There exist subsets of a vector space that are not closed under linear combinations but are closed under convex combinations. For example, the interval [ 0 , 1 ] {\displaystyle [0,1]} is convex but generates the real-number line under linear combinations. Another example is the convex set of probability distributions, as linear combinations preserve neither nonnegativity nor affinity (i.e., having total integral one).

Как переводится convex combination на Русский язык